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Abstract

The objective of this paper was to determine current system attributes of landing
gear on a runway, to develop a new landing gear system which reduces vibration at
200km/hr, and to analyze the robustness of the new system by analytically testing
it on a sawtooth surface. We determined the current system attributes by analyzing
the transient response of the system using logarithmic decrement. We found that the
current system attributes were k = 4418000N/m and c = 25549Nsm Then, we developed
the new landing gear system by methodically altering the system’s damping coefficient
c and spring constant k such that the peak amplitude occurred after the specified
range of operation. Our newly designed spring constant and damping coefficient were
5743400N/m, and 51098Ns/m, respectively. These are reasonable because they are simi-
lar to the real world original values of the system. Finally, we generated the frequency
spectrum of the newly designed system on a sawtooth runway in order to determine
the robustness of the design. The frequency spectrum was then analyzed to determine
if the natural frequency of the system matched with any of the harmonics. We found
that the natural frequency did not match any of the harmonics, thus we concluded that
this is a robust system. We conclude the paper with possible suggestions for further
tests of our system’s robustness and possible areas of further study.
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1 Introduction & Problem Analysis

The landing gear of an airplane may be modeled as the spring-mass-damper system as shown
in Figure 1 (a). The runway surface is described by the curve y(t) = Y0 cosωt with a surface
amplitude of Y0 = 0.1 meters and a wavelength of λ = 12 meters. The mass of the landing
gear is 2000 kilograms. The accompanying free body diagram is Figure 1 (b).

k(y − x) c(ẏ − ẋ)
x(t)

m

(a) (b)

Figure 1: (a) Landing gear model and (b) free body diagram.

To identify the existing system parameters, an experiment was performed to capture the
time trace of the response. The transient motion is recorded in Figure 2.

Figure 2: Transient response of existing landing gear system.
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1.1 Analysis of the Runway Surface

We know that the runway surface can be modeled by the curve y(t) = Y0 cosωt. Where
Y0 = 0.1 meters, and ω = 2πν/λ, where ν is the horizontal velocity of the system, and λ = 12
meters. Thus we can resolve the curve to a simpler form of y(t) = 0.1 cos 2πν

12
t.

1.2 Transient Analysis

To find the damping damping ratio, ζ, we will use logarithmic decrement. We take x1 and
x2 at the first two positive peaks in Figure 2. We approximate their values to be x1 = 0.09m
and x2 = 0.038m. We also take their time value, which we approximate to be t1 = 0.02s
and t2 = 0.155s. We use these two values to calculate δ = ln x1/x2 = ln 0.09/0.038 = 0.862.
We also know that δ = ζωnτd, which we can further simplify to:

δ =
2πζ√
1− ζ2

Now solving for ζ we get that:

ζ =
δ√

(2π)2 + δ2
=

0.862√
(2π)2 + (0.862)2

= .13595

Knowing the damping ratio for the current landing gear system allows us to determine the
frequency response by varying the ratio ω/ωn and plotting the resulting amplitude, |X̃|, and
phase angle, φ. A detailed derivation of this is given in Appendix A, and the results are
presented in Figure 3.
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Figure 3: (a) Amplitude Response and (b) Phase Angle Response for existing design.

We will use the time values of t1 and t2 to calculate τd:

τd = t2 − t1 = 0.155− 0.02 = 0.135s
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Now we use the original equation, δ = ζωnτd, to find ωn, which we then use to kind k for
our system:

ωn =
δ

ζτd

=
0.8622

(0.1359)(0.135)
= 47

Now we use the definition of ωn to calculate k:

ωn =
√

k/m

k = ω2
nm

= (47)2(2000)

= 4, 418, 000 = 4.418× 106N/m

Finally we use the original definition of ζ to find c:

ζ =
c

2mωn
c = 2ζmωn

= 2(0.1359)(2000)(47)

= 25, 549.2 Ns/m

The derivation of the steady state response is presented in Appendix A. Three cycles of
steady-state motion are presented in Figure 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 4: Steady state response for current landing gear system.

2 Simulation & Results

2.1 Design Selection

Because it is a concern at 200km/hr, it is desired that the amplitude of vibration be limited
to 0.145m at this velocity. We wish to design the spring, k, and damper, c, to ensure such
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motion. In order to optimize the response of the system, we have to understand how damper
and stiffness control work. To do this, we hold k constant while varying c and hold c constant
while varying k. The frequency responses of these two actions are shown in Figure 5 (a),
and (b).
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Figure 5: (a) Amplitude Response (Variable k) and (b) Amplitude Response (Variable c).

From this behavior, we observe that increasing c decreases the peak amplitude and increasing
k shifts the peak to the right. For the operating range of 0 to 200km/hr, we want to lower
and shift the peak amplitude such that it occurs after 200km/hr. This strategy is chosen
because the current system’s peak amplitude is to the right of the frequency at 200km/hr.
Therefore, smaller changes to the current design are required to push the peak further to
the right instead of pulling it significantly to the left. Keeping the optimized design close
to the current parameters increases manufacturability which will be discussed more later.
With this desired result in mind, we increase k and c until this condition is met. The designs
leading up to this final design are shown in Figure 6.
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Figure 6: Frequency response of current system and three designs leading to the chosen design.
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The frequency response for our proposed solution, Attempt 3, is presented in Figure 7. This
solution has values of k = 5743400N/m, c = 51098Ns/m, and ωn = 53.58.

To ensure this design is within the preference for an underdamped system, we calculate the
damping ratio, ζ = 0.2384, and confirm that the system is underdamped.

Finally, we consider the feasibility of this design in terms of spring and damper specifications.
When adjusting the spring constant, we stop at a 30% nominal increase to ensure our design
is manufacturable. The damping of the system can be increased by adding damping material,
so this value is used to push the amplitude below the maximum specification at 200km/hr.
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Figure 7: (a) Amplitude Response and (b) Phase Angle Response for solution.

2.2 Analysis of Design Robustness

Suppose that along the runway while the airplane is at 200 km/hr, there is an unforeseen
change in the surface, described by Figure 8. This square wave surface continues for 6 cycles.

Figure 8: Unforeseen motion of the base.

This square wave may be expanded as a Fourier series, as described in Appendix B. Trun-
cating the series at 11 terms produces the approximation shown in Figure 9.
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Figure 9: Fourier approximation of square wave with 11 Fourier terms.

We note that ω0 = 2π/λ, where λ = 24 m for the inconsistency in the runway surface.
We check to see if our proposed natural frequency ωn = 53.58 is a harmonic and find that
ωn/ω0 ≈ 204.6. Since the natural frequency is not a harmonic frequency, no component
should be a concern. However, the 205th comes closest.

3 Conclusions

The purpose of this project was threefold; to determine the current response of a landing
gear system, to develop a new landing gear system to reduce vibration at 200km/hr, and to
analyze the robustness of the solution by considering the response of the system to a saw
tooth surface. The original system was found to exceed the desired maximum amplitude of
0.145m at 200km/hr. The new system was chosen so that the peak amplitude occurs after
the range of operation and does not exceed the desired amplitude. Our designed spring
constant, k = 5743400N/m, and damping coefficient, c = 51098Ns/m, are similar to the real
world nominal values ensuring feasibility of implementation.
This work could be extended by testing more runway shapes to ensure a solution that works
on many different surfaces. Additionally, the design selection process can be expanded to
consider more factors, such as the smoothness of the ride. For example, this could be
approached as an optimization problem where one would define a loss function related to
the magnitude of the derivative of the amplitude curve and seek physically possible solutions
that minimize the maximum derivative.
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Appendix A Steady State Response derivation

To derive |X̃| and φ we must first find the Equation of Motion of the system. Thus we follow
the four steps to producing an Equation of Motion bellow:

1. Select a suitable coordinate to describe motion:
We choose x(t), the motion of the mass, to describe the motion of the system

2. Determine the inertia reference:
We choose towards the top of the page to be the positive direction, and we want to
evaluate the system at its equilibrium position.

3. Displace the system and draw the Free Body Diagram:
Now we displace the system such that y > x. And the free body diagram is displayed
in figure 1(b).

4. Apply Newton’s 2nd law of motion to the Free Body Diagram:

mẍ =
∑

Fx

mẍ = c(ẏ − ẋ) + k(y − x)

Solving, we find that our Equation of Motion is:

mẍ+ cẋ+ kx = cẏ + ky (1)

Using our equation of motion, we will derive the frequency response.

mẍ+ cẋ+ kx = cẏ + ky

We know that y(t) = Y0 cosωt, and thus ẏ(t) = −ωY0 sinωt. Now we assume a harmonic
solution so that we can subsitute y(t) = Y0e

iωt, and ẏ(t) = iωY0e
iωt. Plugging this back into

the EOM we get:
mẍ+ cẋ+ kx = c(iωY0e

iωt) + k(Y0e
iωt)

Define a new variable: Ỹ = (k + icω)Y0.
Thus we can write a more familiar equation:

mẍ+ cẋ+ kx = Ỹ eiωt

We now assume a solution (x(t) = X̃eiωt) and plug this back in the EOM:

m(−ω2X̃eiωt) + c(iωX̃eiωt) + k(X̃eiωt) = Ỹ eiωt

X̃eiωt[−mω2 + icω + k] = Ỹ eiωt

X̃ =
Ỹ

(k −mω2) + icω

Plugging this back into x(t), and recalling that we defined Ỹ = (k + icω)Y0 we get that:

x(t) =
(k + icω)Y0

(k −mω2) + icω
eiωt
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Notice that both the denominator and numerator of the fraction in the equation above are
complex numbers, and thus can be converted into polar form:

x(t) =
Y0
√
k2 + (cω)2eiφ1√

(k −mω2)2 + (cω)2eiφ2
eiωt

From our knowledge of imaginary numbers we know that: φ1 = tan−1 cω
k

and φ2 = tan−1 cω
k−mω2 .

Define a new variable φ = φ2 − φ1. Now through our knowledge of trigonometry identities
and the small angle assumption we get that:

φ = tan−1
cmω3

k(k −mω2) + (cω)2

But our solution is still in the complex plane, and we want a solution that is either entirely
real. And since our prescribed motion is y(t) = Y0 cosωt), we want the real part of the
complex solution:

xp(t) = Re{|X̃|ei(ωt−φ)} = |X̃| cosωt− φ

Finally we will represent |X̃| and φ in terms of ωn and ζ:

|X̃| = Y0

√
1 + (2ζω/ωn)2

[1− (ω/ωn)2]2 + [2ζω/ωn]2

φ = tan−1
2ζ(ω/ωn)3

1− (ω/ωn)2 + (2ζω/ωn)2

Appendix B Fourier Transform of Square Wave

Upon inspection we find that the function is both symmetric about the x-axis and is odd we
know that a0 = 0, and that aj = 0 for all j ∈ N. A short proof of this is given below:

a0 =
2

τ

∫ τ

0

y(x)dx

=
2

24

[∫ 12

0

.07dx+

∫ 24

12

−.07dx

]
=

1

12
[.07(12− 0)− .07(24− 12)]

a0 = 0
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aj =
2

τ

∫ τ

0

y(x) cos (jω0x)dx

=
2

24

[∫ 12

0

.07 cos (jω0x)dx+

∫ 24

12

−.07 cos (jω0x)dx

]
=

1

12

[
.07

ω0j
(sin 12jω0 − sin 0) +

−.07

ω0j
(sin 24jω0 − sin 12jω0)

]
=

.07

12ω0j
[sin(πj)− 0− sin(2πj) + sin(πj)]

=
.07

12ω0j
[0]

aj = 0

Given that both of these terms go to zero we know that the fourier transform of this square
wave will be of the form:

f(x) =
∞∑
j=1

bj sin(jωt)

So, next we must solve for bj:

bj =
2

τ

∫ τ

0

y(x) sin(jω0x)dx

=
1

12

[∫ 12

0

.07 sin(jω0x)dx+

∫ 24

12

−.07 sin(jω0x)dx

]
=

1

12

[
−.07

ω0j
(cos(12jω0)− cos 0) +

.07

ω0j
(cos(24jω0)− cos(12jω0))

]
=

.07

12jω0

[− cos(πj) + 1 + cos(2πj)− cos(πj)]

=
.07

πj
[1 + cos(2πj)− 2 cos(πj)]

bj =
.07

πj

[
2− 2(−1)j

]
Thus we can conclude that the fourier transform of the square wave given in part 4 of the
project is equivalent to:

f(x) =
∞∑
j=1

[
.07

πj
(2− 2(−1)j) sin j

2π

24
t

]
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